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Because of the relative simplicity of the statistical model for molecular inter- 
actions, numerically exact solutions of the Krook kinetic equation can be ob- 
tained. Comparison of exact and approximate solutions of the model equation 
allows the evaluation of approximate procedures for solving the Boltzmann 
equation. Exact and approximate numerical solutions have been obtained for 
Couette flow with heat transfer and the structure of a pIane shock wave. The pre- 
sent paper summarizes the work of the author in obtaining the numerically 
exact solutions. 

1. Introduction 
Krook (1955,1959) has pointed out that the relative simplicity of the statistical 

model for molecular interactions allows numerically exact solutions of the 
Krook kinetic equation to be obtained. An opportunity is thereby provided 
for evaluating various approximate procedures for solving the Boltzmann 
equation by comparing exact and approximate solutions of the model equation. 
Exact and approximate numerical solutions have been obtained for two steady, 
one-dimensional problems: Couette flow with heat transfer and the structure 
of a plane shock wave. The present paper summarizes the work of the author 
(Anderson 1963) in obtaining the numerically exact solutions. Comparisons 
with the approximate results of Macomber are to be found in Anderson & 
Macomber (1965) and Macomber (1965). 

In  §2, we derive the equations defining the Couette-flow problem. In $3, 
we consider the numerical methods employed to solve these equations, and, in 
$4, we consider the general character of the solutions. In  $35-7, the shock 
structure problem is treated in parallel fashion. 

2. Couette-flow equations 
Consider a monatomic gas th  no internal degrees of freedom confined be- 

tween two parallel plates z, = 0 and x, = 1. The plate x, = 0 is at rest and is 
maintained at a constant temperature To; the plate x1 = I is translating in its 
plane with constant velocity Wg2 and is maintained at a constant temperature 
Z',. The problem is steady and one-dimensional in the sense that the velocity 
distribution function f(v; xl) describing the state of the system depends only 
on x,. 

In  order to specify the interaction of molecules with the boundaries, we assume 
that molecules which strike a plate are subsequently emitted with a Maxwellian 
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velocity distribution characterized by the plate temperature and velocity. 
Since the boundary conditions involve qnly the emitted particles, it is convenient 
to define half-range distribution functions by 

and 

The boundary conditions can then be written 

(2) 

(3) 

f+(v; 0 )  = n o w ;  To), 
and f-(v; 1) = nlcD(v- W2,; Tl), 
where @(v; T )  = (m/2nkT)3 exp ( - mv2/3kT). 

m is the molecular mass and k is Boltzmann's constant. The parameters 
no and nl are not known a priori; they are determined by some characteristic 
number density of the gas and the condition that there be no net mass flux 
normal to the plates. 

The Krook kinetic equation describing the system reduces to 

wlaf/axl = v[ -f+ n@(v - q2,, T ) ] ;  (4) 

n, q,  and T are the local number density, flow velocity, and kinetic temperature, 
respectively. The collision frequency v(xl) is a function of the law of force between 
molecules but can be removed from the equation by a co-ordinate transforma- 
tion. In  this sense, the solutions obtained are universal. Define a characteristic 
velocity uo and a global Knudsen number h by 

uo = l/(kTo/m) ( 5 )  

and 

A universal co-ordinate 7 is then defhed as 

7 = v( t )  dt. 
uo 0 

We complete the definition of dimensionless variables as follows: 

and 

(7) 

The usual definitions of the low-order moments become 

a=JBdu ,  ay= u,Fdu and 3ap2= (u-y6?2)2Fdu. s s ( 9) 

The kinetic equation becomes 

hUl a q a 7  -I- P = a@(u -ye,; p2), (10) 
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with boundary conditions 

I F+(u;-O) = #(u; 1) 

F ~ U ;  1) = W+(U-  m,; p;). and 

Formally integrating (10) and applying (1 l),  we obtain 

F+(u; 7) = $(u; l )exp[-~/Au~J+- dta#exp[-(7-t)/hu1] 
Au, s' 0 

and F-(u; 7) = w#(u  - FO,; p,") exp [ - (1 - ~ ) / A l u ~ l ]  } (12) 

With the statistical model, the distribution function is characterized completely 
by its low-order moments. When a, p2, y ,  and w are known, higher moments, 
such a8 the stress tensor and heat-flux vector, can be evaluated by quadrature. 

( 1 3 )  

Define 
dt tn-2 exp [ - i t 2  - q/t] . 

Substituting (12) in (9) yields the following set of singular, non-linear integral 
equations: 

These equations define cx,/32, and y ;  simultaneously, the parameter w is deter- 
mined by the condition that the conserved mass flux normal to the plates be zero. 
This condition yields 

where sgn(z) = x/Ixl.  The kernel function Ggt(q) is the subject of a separate 
publication (Anderson & Macomber 1964). 

The problem so formulated is characterized by three dimensionless parameters: 
the Knudsen number A, the temperature ratio p,", and the velocity ratio I?. 
Since we propose to compare exact and approximate solutions in order to assess 
the efficacy of the latter, this self-contained, universal formulation is very 
convenient. If it is desired a poderiori to obtain results in physical co-ordinates, 
it is necessary to re-dimensionalize. This presents no difficulty for p2 and y ,  since 
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To and W are well defined. However, no must be determined in such a way as to 
be consistent with the given values of’h and 1. The collision frequency v can be 
related to the transport properties of the gas by applying the Chapman-Enskog 
procedure to the Krook kinetic equation. Usually, v is chosen as a function of a 
and /32 so as to model the viscosity of a given gas. Conversion from 7 to x1 then 
reduces to a simple quadrature. Finally, no can be chosen so as to be consistent 
with the model for v and the given values of h and 1. 

3. Numerical solution of the Couette-flow equations 
The analytic problem formulated in $2 involves the solution of three coupled, 

singular, non-linear integral equations for a, p2, and y ;  and the simultaneous 
determination of w from a fourth such equation. To approach the problem 
numerically, we first replace the analytic equations by discrete analogues. This 
yields a finite set of non-linear transcendental equations which are then solved 
iteratively. 

We replace the integral operators by Gaussian quadrature formulae. The 
kernel function G,(q) behaves logarithmically near q = 0. This is an important 
feature of the analytic problem and was retained in the discrete analogue by 
developing special Gaussian quadrature formulae adapted to the logarithmic 
singularity (Anderson 1965 a). The necessity of orienting the quadrature sample 
points relative to the singularity, and hence making them .r-dependent, dictates 
a continuous rather than a discrete representation of the dependent variables. 
ap2, p2 and y were therefore represented as finite expansions in Chebyshev 
polynomials (Lanczos 1952). To determine the expansion coefficients, the dis- 
cretized equations were enforced at  a set of interpolation sample points. When 
these sample points are chosen as the roots or extrema of a Chebyshev poly- 
nomial of appropriate degree, there is a duality between the values of the function 
at  the sample points and the expansion coefficients, through the well-known 
discrete orthogonality conditions. Furthermore, the distribution of these inter- 
polation sample points-clustered somewhat near the boundaries-is appro- 
priate for a problem in which we anticipate Knudsen layers. For reasons of 
computational efficiency, it is necessary to optimize the discretization by mini- 
mizing the required number of quadrature and interpolation sample points. 
The discretization described above is ‘ near-optimum ’. 

The solutions of the discrete problem are sets of expansion coefficients or, 
dually, sets of sample values. Rather than reformulating the equations explicitly 
in terms of one of these sets of unknowns, it is convenient to retain the equations 
as they arise naturally from the discretization of the analytic problem and to 
retain the dual sets of unknowns. The discrete equations are then solved itera- 
tively. The straightforward successive substitution iteration suggested by the 
form of the equations proves to be adequate for large A. However, the successive 
substitution iteration becomes ill-conditioned and slowly convergent for A 5 1 
-as observed by Willis (1962, 1963) in the linearized problem. This behaviour 
is due to the fact that the equations tend to become identities as h + 0; that is, 
the kernel functions become almost reproducing. For very small A, it is necessary 
to remove this ‘identity’ by a, preliminary integration by parts, a t  the expense, 
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however, of introducing additional dependent variables. For the range of transi- 
tion Knudsen numbers considered here ( A  = 10 to &), such a reformulation 
of the problem did not prove to be necessary. After considerable experimenta- 
tion, suitable iterative procedures, which are reported elsewhere (Anderson 
19653), were developed. 

Experiments suggest that the solutions obtained have four significant figures. 
As usual, most of these experiments are of the nature of internal self-consistency 
checks on the numerical procedure. However, an additional check on the results 
is available. A posteriori, the stress tensor and heat-flux vector components 
were calculated. Among these components are three conserved quantities which 
are not used explicitly in the calculation. The.degree to which these conserved 
quantities, as well as the conserved normal mass flux defining w, are constant 
may attest to the validity of the results. 

4. Solutions of the Couette-flow equations 

parameters: 
Solutions have been obtained for the following values of the characteristic 

A = 10, 4, 2, 194 ,  t, $,$, &; 
p 2  - 1 -7- - 
1 - 1 0 ,  I%& 

r = 0, ;5, i , 5 .  and 

A selected set of solutions is presented graphically in the Appendix. 
The general character of the solutions is much as one would expect, though 

somewhat smoother than anticipated. By and large, the graphs will be allowed 
to speak for themselves. My remarks will be confined to a few observations on 
the graphs and a few comments on some subsidiary calculations. 

One interesting observation is the linear dependence of the y profiles on 
r: In  figure 1 (see the Appendix) the curves for I' = $G and 1 are seen to be 
identical to graphical accuracy. This is somewhat surprising since the pressure 
and temperature, and hence density, show pronounced frictional effects, pro- 
portional to r2, which might be expected to affect the velocity. The linear 
dependence of y on I? is probably due to the use of the reduced co-ordinate 
7 ;  in physical co-ordinates, this linear dependence would be destroyed by the 
dependence of Y on a and p2. 

Two limiting effects are evident in the graphs: For large A (near-free-molecular 
flow), the velocity profiles for varying @ are of essentially the same shape, differ- 
ing only in the slip at the plates. I n  this limit of strong global coupling, the 
solutions are essentially superpositions of the wall conditions, and the depen- 
dence of o on p;  (and weakly on I?) accounts for the change in the slip. As 
decreases, the coupling becomes more and more local and differential effects 
of local rather than global Knudsen number become apparent. Note, for example, 
the convergence of the profiles near 7 = 0 where the local mean free path, and 
hence the slip, is determined by A, while it varies as ha, near 7 = 1. The frictional 
effects also become more pronounced and non-uniform for small A. 

Non-linear, kinetic-theory phenomena are most evident in the pressure 
ap2, which in continuum theory is constant. While the reduced variable used 

18-2 
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in plotting the pressure curves does exaggerate the effect somewhat, a global 
pressure gradient and loch Knudsen layers appear whenever there are tempera- 
ture and/or density gradients. 

For selected cases, the non-zero components of the stress tensor and heat- 
flux vector were evaluated by quadrature. Attempts were made to correlate 
the results for different cases by defining viscosity, heat conductivity, and slip 
coefficients. These coefficients were found to be as variable as the original data, 
and no useful correlations were found. It seems reasonable to assume that such 
continuum concepts as transport and slip coefficients are simply inappropriate 
in the range of transition Knudsen numbers. 

Further evidence of non-continuum effects is seen in the fact that the diagonal 
components of the stress tensor are far from equal in some cases. Furthermore, 
there is a significant heat-flux vector component parallel to the plates whose 
value-and even sign-is a strong function of A, p:, I? and 7. 

One criterion for ‘non-linearity’ in this problem is that the macroscopic 
variables change significantly on the scale of the mean free path. From con- 
tinuum theory, one anticipates smooth, slowly varying interior solutions which 
are accommodated to the boundary conditions by rapidly varying Knudsen 
layers. The solutions obtained are in fact smooth and slowly varying everywhere, 
with simply slip at the boundaries. The problem seems not really to be of ‘bound- 
ary layer ’ character. This may or may not be the case for more general collision 
models and boundary conditions. The ‘non-linearity’ of a given problem is a 
rather complicated function of the full set of characteristic parameters. The sets 
of parameters selected apriori, and shown above, may err in being too ‘linear’, 
but the computational procedure will handle a wider range of the p: and I? 
parameters. It would be easy to extend the results to larger Knudsen numbers 
(from the transition to the free-molecular flow rbgime), but much smaller values 
of h (tending toward the continuum rbgime) would require a new approach 
to the problem, for the reasons outlined above. 

In  and of themselves, the exact solutions of the Couette flow with heat trans- 
fer problem with the Krook equation are not particularly interesting. Their 
usefulness lies primarily in their role as standards for comparing and assessing 
various approximate procedures applied to the model problem. A set of solutions 
for some 72 cases is presented in condensed form in an appendix to Anderson 
(1965 c). 

5. Shock-wave equations 
Consider a plane shock wave in a reference frame moving with the shock, 

choosing the x-axis normal to  the shock. We take cylindrical co-ordinates in 
velocity space: u, is the component of velocity normal to the shock; the trans- 
verse velocity u, and the angle [form polar co-ordinates in the plane of the shock. 
We anticipate that the only non-zero component of the flow velocity is qn = p 
and that the distribution function f(un, u,; x) is independent of 6. 

For this steady, one-dimensional problem, the Krook kinetic equation reads 

u,af/aX = +-f+naqu-p2; TI]. (18) 
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Far upstream (z -+ - co) and downstream (z -+ + co), the gas relaxes to thermo- 
dynamic equilibrium states (nl, ql, TI) and (n,, q,, T,) respectively, with the corre- 
sponding Maxwellian distribution functions. We define a reduced independent 
variable T (to remove the collision frequency Y from the equation), dimensionless 
dependent variables a, P2, and y ,  and corresponding distribution functions by 

where v = u,/u2 and w = u&,. 

There is no characteristic origin or scale of co-ordinates in this problem; thus, 
we cannot define a global Knudsen number. We simply anticipate that the 
interesting structure occurs 'near' T = 0. 

The kinetic equation and boundary conditions now read 

UaF/& + F = u$, 

and 

Defining half-range distribution functions by 

and I P+ = F for v > 0 

F- = F for v -= 0, 

we formally integrate (21) to obtain 

and 

The boundary conditions are implicit in these equations in the sense that the 
integrals reduce to the correct Maxwellian form when a,P2, and y take on con- 
stant values. 

Since the full-range distribution function is known at the boundaries, certain 
conserved quantities can be evaluated explicitly; this yields the usual Rankine- 
Hugoniot relations between the upstream and downstream equilibrium states. 
In  terms of a shock Mach number M ,  these relations yield 

a1 = (M2+3)/4M2, /3; = 16M2/(M2+3)(5M2- l), (25) 

and Y1= .JiPlM. 
By definition, we have a2 = (B2 = 1. y2 can be obtained from the fact that a y  
is a conserved quantity. Indeed, it is convenient to eliminate a in favour of y 

(26) 
through the conservation law 

aY = alY1. 
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There seems little point in retaining three dependent variables. The mode of 
convergence of any iterative process for solving the problem will depend on the 
number of unknowns, but the same solutions will result if the process is self- 
consistent. 

We obtain singular, non-linear integral equations for P2 and y by substituting 
the formal integrals (24) in the definitions of the low-order moments: 

a = ~ ~ w d t a H l ( s g n ( r - t ) ~  a 
P’ P 

3mP2 + ay2 = 1 dt a/3 k3(sgn (T - t) 
--m P’ w) P 

1 
} (27) 

The kernel function 

HJPY q) = ___ duun-2exp{ -* (~ -p )~ -q /u}  (28) 
4 2 7 ~ )  Sm o 

is the subject of a separate publication (Anderson Q Macomber 1964). 
The problem so formulated is characterized by a single dimensionless para- 

meter-the Mach number M .  Again, in the terms of reference of the present 
research, the self-contained, universal r formulation is the most convenient. 
Results in physical co-ordinates can be obtained a posteriori by quadrature, 
once a model for the collision frequency is specified. 

6. Numerical solution of the shock-wave equations 
The numerical procedures employed in the shock-structure problem parallel 

those described above for the Couette-flow problem; thus, the discussion here 
can be abbreviated somewhat. In  many ways the shock-wave problem is the 
easier of the two; there are only two functions to be determined and only a 
single characteristic dimensionless parameter, the Mach number. However, 
for reasons inherent in the problem, it is more difficult to obtain a satisfactory 
numerical solution. 

Theanalytic problemis fist replaced by a discrete analogue and then the result- 
ing discrete problem is solved iteratively. The integral operators are replaced by 
Gaussian quadrature formulae oriented with respect to the singularity at t = r ;  
again, the logarithmic singularity is retained by means of special quadrature 
formulae. The considerably more complicated structure of the kernel functions 
and the infinite interval of integration make a satisfactory, and yet efficient, 
discretization of the integral operators more difficult than in the Couette-flow 
problem. As a consequence of the increased number of quadrature sample points 
required and the fact that it is considerably more time consuming to evaluate 
H, than G,, one iteration in the shock problem requires ten to twenty times the 
computation time required for one iteration in the Couette-flow problem- 
of the order of half a minute on an IBM 7094. While there are fewer problems 
to run, since there is but a single free parameter, the program development was 
somewhat curtailed by economics. 



Numerical solutions of the Krook kinetic equation 

To retain the ‘near-optimum ’ Chebyshev interpolation, the interval 

279 

was mapped into the interval - 1 < z < 1 by the transformation pair 

z = tanh (?/A) and 7 = 4Aln [( 1 +z)/( l  - z ) ] .  (29) 

The Chebyshev collocation points in the z domain are mapped into a set of 
points clustered about the origin in the 7 domain. This particular transformation 
was suggested by the classical weak shock solution of Taylor (Hayes 1960). 
The interpolation sample points at which the equations are enforced are chosen 
as the extrema of an appropriate Chebyshev polynomial, including the points 
z = _+ 1, so as to impose the known boundary conditions on all potential 
iterates. The dual sets of unknowns are retained, as before. The parameter A is 
chosen so that roughly 98 yo of the variation of the profiles occurs in the interval 

Because of the nature of the discretization, it is convenient to choose initial 
iterates as appropriately normalized hyperbolic tangent profiles. The iterative 
procedures described in Anderson (19653) proceed satisfactorily at first but 
after 10-15 iterations-the equivalent of 30-50 successive substitution iterations 
-the process becomes stationary. That is, the iterates oscillate among a class 
of final states and convergence ceases. As a result, one can be confident of only 
two to three significant figures in the solutions. The obvious explanation of 
round-off error accumulation is easily ruled out; we shall discuss briefly one 
possible explanation of this behaviour. 

The equations (27) are invariant under translation of the origin of co-ordinates 
and there are, therefore, a set of solutions which are isomorphic under translation. 
To obtain a well-set problem with a unique solution, one must divide the potential 
iterates (monotonic pro-files taking on the correct boundary values) into equiva- 
lence classes based, for example, on the value of y at the origin. The unique 
solution is defined to be a member of the canonical equivalence class character- 
ized by y taking on its median value at the origin. 

At each stage, when a new iterate is determined from a set of collocation 
points oriented with respect to the nominal origin 7 = 0, one can determine an 
effective origin 7 = r0 with respect to which the new iterate falls into the canonical 
equivalence class. If the iteration were carried out analytically, it  is reasonable 
to assume that, if each iterate is mapped into the canonical equivalence class 
at each stage, a convergent iterative process can be obtained (cf. Altman 1955). 
In  the analytic iteration, r0 would converge to zero, but in general this is not the 
case with the numerical iteration. While the analytic problem is translationally 
invariant, the numerical problem is not in the large, since only a finite number 
of collocation points are used. A natural solution of the discrete problem (with, 
in general, T~ + 0) is induced by this lack of invariance of the discretization. It is 
possible-indeed probable-that this natural solution exists only in a ‘least 
squares ’ sense. That is, the non-linear equations constituting the discrete 
problem may not have a real solution but only some profile which satisfies 

-3A < 7 < 3A. 
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the equations best in some sense. In  non-linear numerical problems, this question 
of existence of a solution of the discrete equations is usually ignored as un- 
answerable. One depends on the analogy with the well-posed analytic problem 
to define a ‘solution’ satisfying the equations to a satisfactory degree. A rather 
unpleasant side-effect is the fact that the natural solution depends on the 
discretization. We must accept the T~ appropriate to the given discretization 
and seek the corresponding natural solution iteratively, without mapping the 
iterates into the canonical equivalence class at each stage. 

Any consistent discrete analogue of the translationally invariant analytic 
problem is translationally invariant in the small, and there is a whole set of 
profiles, isomorphic under translation, which satisfy the equations equally well. 
In  the neighbourhood of the natural solution, the iterates orbit in a class of 
profiles which the procedure is powerless to distinguish, and the iteration is 
asymptotically only neutrally stable. 

Considerable experimentation with this and other simpler model problems 
has failed to yield a satisfactory resolution of this insidious kind of ill-condition- 
ing. The degree of indeterminacy of the solution is extremely problem-dependent 
and, unfortunately, is relatively large ( N 5 x lo-*) for the problems of interest. 
The results obtained are adequate for preliminary comparison with the corre- 
sponding approximation-procedure results ; however, since some of these pro- 
cedures seem to yield quite accurate results, the problem would bear further 
study if some new insight can be found. 

The shock-structure problem with the Krook kinetic equation has also been 
studied by Liepmann, Narasimha, & Chahine (1962) and Chahine (19634.  
They employed a rather more complicated numerical procedure in which the 
kernel function was evaluated by numerical quadrature and the universal 7 

co-ordinate was not used; a, particular model for the collision frequency was 
chosen apriori. As a result, their computation time for one iteration was between 
one and two orders of magnitude longer than in my case. It is not surprising, 
therefore, that their original results were inaccurate, due to the all too common 
error of mistaking an ill-conditioned, slowly convergent, successive substitution 
iteration for a rapidly converging one. This is one of the most difficult problems 
in numerical work of this kind. In  addition, their numerical treatment of the 
logarithmic singularity of the kernel was less than adequate. These defects 
have been remedied in the more recent work of Chahine & Narasimha (1965), 
by increased attention to  the singular region and an increase of an order of magni- 
tude in the number of iterations performed. 

I have translated my results into physical co-ordinates using the collision- 
frequency-viscosity correlation employed by Chahine & Narasimha. To the 
limits of graphical comparison, no significant discrepancy between the results 
seems to remain. However, the temperature profiles seem to agree somewhat 
more satisfactorily than the density profiles. As pointed out in Chahine (l963b), 
the fact that the logarithmic singularity of the kernel is not retained has its 
predominant effect on the density profile, in particular on the downstream side 
of the shock. 

No problem with the translational invariance of the equations is reported by 
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Chahine. As mentioned above, the effect of the invariance is very problem 
dependent. I feel that the fact that the r variable was not used by Chahine 
means that the discrete problem so formulated is less invariant in the small, and 
the iterates-including the initial Navier-Stokes profile-are more tightly 
coupled. Consequently, the effect of the invariance is reduced, but not eliminated. 
The use of the r variable, while it enhances the invariance problem, simplifies 
the numericaI problem considerably and is the most suitable frame of reference 
for comparisons with the results of approximation procedures. In  addition, I 
believe the role of the r variable in distributing the discretization sample points 
optimally with respect to the natural local mean-free-path scaling of the problem 
to be quite significant. 

Because of the invariance problem, one cannot say definitely which set of 
results is closer to the true solution. However, the satisfactory agreement of 
profiles obtained by quite different numerical procedures and the rather spec- 
tacular agreement of certain of the approximation-procedure curves with the 
present results indicate that the problem has been solved adequately for all 
practical purposes. 

7. Solutions of the shock-wave equations 
With the reservations noted above, results have been obtained for M = 1.2, 

1.5, 2.0, 3.0, 5.0, and 10.0. A selected set of these results is presented graphically 
in the Appendix; the profiles which have been suppressed are quite similar. 
For comparison, curves in the r and the x domains are given. 

The distortion involved in the translation from the universal r-co-ordinate 
to the physical x-co-ordinate is much more significant in the shock-wave problem 
than in the Couette-flow problem. Through the shock, there are large gradients 
of the macroscopic dependent variables and hence a strong variation of the 
collision frequency v. In  the r domain, the solutions are considerably smoother 
and more symmetrical than in the II: domain. Other characteristic velocities than 
that defined in (19) could have been used to define r. The results suggest that, in 
this particular 7-co-ordinate system, the profiles tend to limiting profiles as 
M + 00. The profiles for M = 5.0 and 10.0 are essentially identical. 

A more complete selection of shock profiles is presented in condensed form in 
an appendix to Anderson (1965~).  

8. Conclusion 
Numerically exact solutions of the Krook kinetic equation have been obtained 

for two steady, one-dimensional problems: Couette flow with heat transfer 
and the structure of a plane shock wave. These have served (Anderson & Macom- 
ber 1965, and Macomber 1965), and will serve, as standards for comparing and 
evaluating approximation procedures applied to these model problems. Such 
comparisons may supply some modicum of justification for the application of 
such approximation procedures in more complicated problems whose exact 
solution is not feasible. 

The numerically exact solutions do not in themselves yield any particularly 
unexpected results. They may prove useful in attempting to assess the eacacy 
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of the statistical model as a physical rather than a mathematical tool. For 
example, it would be interesting to see if a self-consistent empirical specification 
of the collision frequency v is possible. However, perhaps the most useful by- 
product of the research is the experience gained in solving such problems 
numerically. 

The author would like to acknowledge the contributions of Professor Max 
Krook and Dr H. K. Macomber through many helpful discussions. This work 
was supported by the Smithsonian Astrophysical Observatory and the National 
Science Foundation. 

Appendix 
The Couette-flow problem is characterized by three dimensionless parameters : 

the Knudsen number A,  the plate temperature ratio /3; and the plate velocity 
I?. For this problem, we define the following reduced dependent variables: 

a = ( a - l ) / ( w - 1 ) ,  B” = ( l - / 3 z ) / ( l - / 3 ; ) , * l  

and 5 = (w-/3<1)/(/3p--/3;1).  I 
A selected set of curves of these dependent variables plotted versus r for various 
values of the characteristic parameters follows (figures 1-8). In  each figure, 
there are a number of curves labelled a, b, . . . . In  the figure legend, the set of 
characteristic parameters involved is specified by a triplet of numbers : 

The shock-wave problem is characterized by a single dimensionless parameter: 
the Mach number M .  For this problem, we define the following reduced 
dependent variables : 

(A ,  P& 

- 

(A21 1 a = (a--a1)/(1-a1), 

P2 = ( / 3 z - / 3 3 / ( 1 - / 3 3 ,  
Y = (Y - Yz)/(Y1- YZ). 
- 

and 

Two sets of shock profiles are given: first, profiles versus r / A  using the nominal 
origin and, second, profiles versus 7rx/4A using the effective origin. We define 
a characteristic upstream mean free path A by 

A = & ) v l / n l 4 ( m k w  

The viscosity p, related to the collision frequency v by 

pv = nkT, (A 4) 

P/Pl  = (T/TdS. (A51 

is assumed to have a temperature dependence given by 

This yields 
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With s = 0.816, the pseudo-gas of the Krook kinetic equation models the vis- 
cosity of argon, under some conditions. Owing to the fact that this simplest of the 
hierarchy of statistical models contains but a single free parameter Y, the Prandtl 
number of the pseudo-gas is unity. 
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